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Abstract

In this paper accurate tree stand height retrieval is detraird using C-band Shuttle Radar Topography
Mission (SRTM) height and ancillary data. The tree heiglitieeal algorithm is based on modeling uniform tree
stands with a single layer of randomly-oriented vegetapiariicles. For such scattering media, the scattering phase
center (SPC) height, as measured by SRTM, is a function ef hebight, incidence angle, and the extinction
coefficient of the medium. The extinction coefficient for fanm tree stands is calculated as a function of tree
height and density using allometric equations and a fraotal model. The accuracy of the proposed algorithm is
demonstrated using SRTM and TOPSAR data for 15 red pine amstiian pine stands. (TOPSAR is an airborne
interferometric synthetic aperture radar.) The algorithields rms errors of 2.5 to 3.6m, which is substantial
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improvement over the 6.8 to 8.3m rms errors from the raw SRTMus) National Elevation Dataset (NED)

heights.

Index Terms

Remote sensing, Synthetic aperture radar, Interferometry

I. INTRODUCTION

One set of forest structural components that is not well oregsby the current Earth Observing System
is forest vertical structure parameters, such as tree hélgis paper presents an algorithm, based on an
electromagnetic scattering model, to estimate tree staighhusing data from an interferometric synthetic
aperture radar (INSAR) mission, the Shuttle Radar Topdgrayission (SRTM) [1], in conjunction with
ancillary data.

Interferometric synthetic aperture radar (INSAR) is id&al retrieval of forest structure, since it has
been shown to be particularly sensitive to forest vertitalcsure parameters, such as extinction and height
[2], [3], [4]. Multiple-baseline INSAR and polarimetry atesed in [5] to estimate an additional parameter,
the ground-to-volume scattering ratio. Further, trunkntiter, tree height, tree density, branching angle,
soil moisture, and wood moisture are retrieved from INSARadeom multiple incidence angles in [6].
Fully polarimetric INSAR (POLINSAR) [3], [7], [8] is sensite to the distribution and orientation of
scatterers, further increasing the set of canopy param#état can be estimated [9]. Encouraging results
have been obtained from POLINSAR [8], [10]. A newer POLINSARproach is in [11]. An additional
estimation scenario [5] employs multi-altitude, multeduency polarimetric SAR and INSAR data to
determine vertical extinction profiles in addition to a sétusual parameters such as height, ground to
volume scattering ratio, etc. Some stem volume retrievahots requiring training, which use ERS-1/2
and JERS multitemporal interferometry, are in [12], [13heTdata sets upon which these studies are
based are multitemporal, such as from ERS-1/2 and JERS eonighly localized, like those produced

by airborne INSAR or special spaceborne, multitemporal ARSmissions that were not global, unlike
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SRTM. In the past several years, progress has been madeavirej forest structural parameters using the
SRTM data set [14], [15], [16], [17]. This paper reports ttevel approach in [14], [15], which retrieves

tree stand height from SRTM and ancillary data employing lgordhm based on an electromagnetic
scattering model, not using an empirical regression moeeved from ground truth measurements, as in

[16].

[I. BACKGROUND

The basic measurement provided by SRTM is an INSAR heigttt) véspect to a reference surface
(see Section Ill). When trees are present, the INSAR heigbve the underlying ground height tends
to be less than the tree heights, since SRTM penetratesabeanopy to a certain extent. In this paper
we define theSRTM scattering phase center (SPC) heigghtbe the SRTM INSAR height minus the
underlying ground height, in order to distinguish it fronetSRTM INSAR height. Tree height, density,
and other forest vertical structure parameters (see Sebtias well as INSAR geometry parameters like
incidence angle, affect the SRTM SPC height. Ideally, we ldidike to have an inverse model like the
one pictured in Fig. 1, where the SRTM SPC heighp is taken as the input, and the model outputs
an estimate of the average heig%t of a tree stand. However, due to the complex nature of soagter
mechanisms in such an environment, it seems extremelyudiffi€ not impossible, to create such a direct
inverse model.

The basic strategy used in the studies listed above to deteffiorest vertical structure parameters, with
the exceptions of [16], [17], is to develop theory-basedward-scattering models describing SAR, IN-
SAR, and POLINSAR observables as a function of canopy passielhe models are usually simplified
to include only the most influential parameters of inter&se forward models are then inverted to yield
forest vertical structure parameters as a function of SAFSAR, and POLINSAR observables, often using
an iterative scheme similar to Fig. 2, which is specializzdSRTM SPC height. The literature concerning
SAR/INSAR forest parameter retrieval indicates that a essful algorithm would require a larger number

of independent radar observables than we have from SRTM RIB&ights alone [2], [3], [4], [5], [6], [7],
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[9], [18], [19], [8]. However, use of additiona priori information (c.f. [8]) such as underlying ground
topography from other sources (c.f. [20], [21], [22], [L6&Xxtinction coefficient measurements [2], etc.
can reduce the number of observables necessary. In our essenground topography maps to convert
SRTM INSAR heights to SRTM SPC heights. Then we employ sgesiructure and tree density and
moisture estimates to allow us to retrieve tree stand hdight the SRTM SPC heights.

We proceed by first describing how to obtain SRTM SPC heighihfthe SRTM INSAR height data.
Then we discuss a simple forward model that relates the tesw eighth,, among other parameters,
to SRTM SPC heightispc. Finally, we present a method for inverting the forward moated describe

our test results.

[Il. SRTM SCATTERING PHASE CENTER HEIGHT

The INSAR heights given in the SRTM data are elevations wepect to the World Geodetic System
1984 (WGS84) geoid. However, the inverse model depictedgnZrequires the SRTM SPC height, which
is the SRTM height minus the height of the ground, as defineskition Il. We obtain an estimate of this
guantity by subtracting the National Elevation Dataset NBeights [23], [24] from the SRTM Ground
Data Processing System (GDPS) heights. We use the Prifongstigator (P1) data for incidence angle
and polarization information. References [20], [21], [2[6] use a similar method to obtain estimates
of SPC height from airborne INSAR and spaceborne SRTM date. SRTM GDPS data for this tree
height retrieval were obtained from [25]. We obtained NERadaom the EROS Data Center at [26]. The
SRTM GDPS data also are available there.

The SRTM GDPS and the NED work particularly well togethemcsi both use nearly identical datums.
The horizontal datum of the SRTM GDPS is the WGS84. Its valrttatum is the WGS84 geoid. The
NED has as its horizontal and vertical datums the North AcaeriDatum 1983 (NAD83) and the North
American Vertical Datum (NAVD88), respectively. For melevel accuracy, WGS84 and NAD83 for
the conterminous United States are effectively identi2d].[ Also, heights in the WGS84 and NAVDS88

vertical datums are within a meter or so. If greater accuiacyeeded, there are means of converting



BROWN, SARABANDI, AND PIERCE: ESTIMATION OF TREE HEIGHT 5

between the various horizontal and vertical datums [28]],[[B0]. However, since the errors in the SRTM
GDPS heights are on the order of a few meters [15], [31], itesegally not necessary to do so.

Other errors in the SRTM minus NED heights are due to sysiemaad random noise in the SRTM
data (c.f. [15], [31], [16]). In order to assess the systemi@apographical noise, we examine the SRTM
minus NED heights, obtained from [32], for a large cultichi@ea (nearly 200 30m by 30m SRTM
pixels) near our test site, where the difference betweenSIREM and NED heights should be nearly
zero. The cultivated area is identified using the Nationald_&over Data Set (NLCD) 2001 [32]. The
mean difference over that area is 0.2m, indicating accgpsaball systematic error for our desired meter-
order accuracy. The standard deviation of the differene thwe cultivated area is 1.7m. However, since
we average several to many pixels in application of our nuttive random noise is reduced [16]. The
standard deviation range of the random noise range for @@ siands (see Section VI) is less than

approximately 0.8m to 1.6m, assuming pixels are averaged uwviform tree stands.

IV. FORWARD MODEL

There are several electromagnetics-based INSAR forwadkfa@vailable in the literature to relate tree
stand height,, to SPC height, such as in [2], [3], [4], [18], [19], [33], [34B5], which is by no means
an exhaustive list. Since we wish to estimate tree standhhdéigsed on SRTM SPC height alone (i.e.
no other SAR/INSAR observables), we must choose as simp&embdel as possible. The single-layer,
randomly-oriented vegetation scattering model with nougtbinteraction [2], [19], [34] is perhaps the
best model for this task. The simplicity criterion is not thely support for using such a model. Even
though the tree stands we test our model on do not constitutefeite single layer [36], the results
(Section VI) indicate that the effect of the ground intel@etat C-band is small enough compared to that
of the direct backscatter so that we can achieve accurachi@orter of a few meters. Such accuracy is
at least sufficient for rough height binning. Future work Idomclude extension to a forward model with

ground and ground-bounce returns, if further accuracy cessary.
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A. Single-Layer, Randomly-Oriented Vegetation Scattekiodel

The SRTM INSAR height data for the end user is an average ofNBAR heights of the individual
SRTM overpasses. Thus, the SRTM SPC hefght- computed from the SRTM INSAR height data can

be modeled as

_ 1 N
h =— hgpc
SPC N ; SPC;

where hspc, denotes the SRTM SPC height derived from tHeoverpass. We can writéspc, as the
output of the SPC height modaH; as a function of the parameters most pertinent to the singpleaird
model we use:

hSPCi = Mz(h'w kOa H7 Ba «, 0i7 n, M’UM Mf),pl))

with h, being the average height of the tree stand (what we want ito&sf). See Fig. 3, is the SRTM
free-space wavenumber at its center frequettys the height of SRTM from the surface of the earih;
is the baseline length, and is the baseline anglé; is the incidence angle of th&" overpassj is the
tree density;M,, and M; are the moisture contents of the wood and the foliage, réispc and p; is
the polarization (VV or HH) of the'* overpass. We explicitly state the model, of which the phase t

is from [2], [3], [34], as follows:

r; sin 0; ke .,
i(hoiko, H,...) = B Ar / jes ! 7 g
M;(hos ko ) FoB cos(f; — o) g[o el e z]
ri sin 6; tan~! Vi Sin(QZi hv) — Oy, COS(C“ZZ' hv) + O‘z«;e—%hv
= a
koB cos(6; — ) i cos(azhy) — vie Ve 4+ o sin(o, hy) |

with

cos 6,
koB cos(0; — )

r; sin 0;
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2Ke,

BT o8 0;

Note that the parameters beyond the semicolonMf; are now implied. “Arg” denotes the radian
phase on the interval-=, x|, andj = y/—1. The extinction coefficient., (Nepers/m) is a function

7

of h,,n,0;,M,,M;,p;, and other parameters:

Re, = Pi<hv7 n; 9@’7 Mw7 Mfaph )

Similar to the situation in [2], the SRTM SPC height alone slo®t provide enough measurements to
estimateh, andx,,. Instead of deriving the extinction coefficient values frameasurements, as in [2], we
relatex,., to h, and other variables, which possibly are easier to estintete the extinction coefficient
itself, using allometric relations and a fractal model. Wil wdetail the development of the extinction
coefficient modelP; in the subsections to follow. First, we present the fractee tmodel used to compute
P;. Then, we calculate the allometric equations necessaecify the fractal models. Finally, we describe

the process of computing; using the fractal tree models, and we present the resuRjngodel.

B. Red Pine Fractal Tree Models

The fractal trees used in this study are the red pine fractalets pioneered in [6], [18], [33], since
that is the dominant species in our test stands. The red poteinalso is used to represent a structurally
similar species, Austrian pine. The fractal modeling mdtieogeneral-purpose and can be used for both
coniferous and broadleaf trees. However, in this proofarfcept work, only two coniferous species are
considered.

We modified the fractal tree generation code used in [6],,[[3] and added a graphical user interface
(GUI) to more easily create tree models of different speoesof different heights, crown sizes, etc.
within the same species. As in [6], [18], [33], the user desig “DNA’ file that encodes species-specific
information about the structure of the tree using the tregigier GUI. In order to produce a specific

realization of a red pine, the user provides tree heighindtar at breast height (dbh), crown depth, and
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crown radius. The tree-generating code then produces iaatah of a red pine with the specified height,
dbh, crown depth, and crown radius. Each tree thus prodwcibbntical only in a statistical sense, even
if the same height, dbh, crown depth, and crown radius areifsgf since the code introduces a certain
amount of randomness to the tree structure according to W& fide. Each tree is composed of thousands

of lossy cylinders of varying lengths and radii that form thenk, branches, needles, etc.

C. Red Pine Allometric Equations

As stated in the previous subsection, the fractal model s\aee height, dbh, crown depth, and crown
radius in order to produce a specific realization of a red.pideally, we would like to have the fractal
model specified by only tree height, since that is the parameé are estimating. However, the best we
can do is to specify the fractal model as a function of tregliteand density through allometric equations
that relate dbh, crown depth, and crown radius to tree hagtitdensity. The red pine allometric equations
are developed using ground truth data from the Raco, Michigdr-C/X-SAR Supersite [37]. A total
of 17 red pine stands are used in the allometric equatioruledions relating height (m), dbh (cm), and
crown depth (m). Figures 4 and 5 depict the red pine data amdetsulting polynomial fits to the data.

The allometric equations are

dbh = 1.4939Ah, + 2.2267, and

crown depth = —0.02559hf, + 1.0193h, — 0.093364.

Another parameter required by the fractal model is crownusad\Me have no data from Raco, Michigan
for crown radius, but it is reasonable to assume we can appabe the actual values by relating crown
radius to tree density. in trees per hectare (ha) by invoking simple physical paghimitations. We
assume that crown radius is half of the average spacing batie trees, where the average spacing in
meters is determined from the tree densityaverage spacingm, where 10000 square meters per
hectare is the conversion factor between area in hectadearaa in square meters. However, crown radius

does not continue to grow without bound with decreasingo we arbitrarily fix the maximum crown
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radius at 2m. Since the average tree spacingf825 trees/ha is 4m, thus yielding crown radius=2m,

we can write crown radius as follows:

20 . >625
crown radius= { V" ,
2 . n<625

wheren is the number of trees per hectare. Implicit in the crownuadiquation is the fact that > 0

and that there is some unknown upper limitrto

D. Extinction Coefficient Model

In order to develop the extinction coefficient model we vagyesal key parameters over wide ranges
of typical values; generate red pine fractal tree modelk Wibse parameters; and comp@eaccording
to [18], [33], employing the electromagnetic scattering code used in[1&], [33], with a single layer at
a temperature of < (28.4F) and 5C (41.0F). (The temperatures are chosen to cover conditions in
Section VI.) The wavelength we use is 5.8cm. First, we gda€t@ realizations of red pine fractal trees
for each combination ok, andn values listed in Table I. The ranges for the and n roughly bracket
typical heights and densities for red pine stands. Nexteémh one of those 30 combinations, we véry
and M = M; = M,,, where gravimetric moisture content (g water/g wet biorhasshe wood is used,
with a dry bulk density of 0.392g/ch{38], according to Table Il, ang; = VV,HH. The assumption that
M = M; = M,, is supported by [39] and is invoked for simplicity. Futurersiens of this model could
independently vary\/; and M,,. The range for the moisture content approximates the raggerted in
[39] for young jack pine. We linearly interpolate to give, values for points not on the grid specified
above. Out-of-range parameters are allowed for height anty only for heights from 0 to 5m and from

30 to 35m by linear extrapolation @%;. The simplified extinction coefficient model is expressed as

Re, = P’L(h’wnve’u M),pl)
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Other parameters might have an effect on the extinctionficait but are included implicitly in the
fractal tree model (e.g., species-specific structure cienatics); set to a fixed, reasonable value; or are
assumed to have second-order effect on the desired me&tralecuracy and are omitted for simplicity.
Figures 6 and 8 display; as a function of the parametéfis, n, 6;, and M for VV polarization at -2C
and 5C, respectively. The temperatures are chosen based ondhegavtemperatures for our data set. See
Section VI. Figures 7 and 9 display the same information fargdlarization at -2C and 5C, respectively.
The format is the same for Figs. 6, 7, 8, and 9. The top row spmeds to)M = 0.3g/g, while in the
bottom row M = 0.6g/g. The columns, left to right, correspond &p= 40°,50°, 60°. Tree heighth, is
along the x-axis of the individual subplots. Tree densiig varied within each subplot to produce the lines
marked by the different symbols, where the symbols “.”, “&”, “+”, and “*” correspond to tree densities
of n = 100, 500, 900, 1300, and 1700 trees per hectare, respectively. The extinction coefficianiation
with polarization and incidence angle (in particular ounga) is not nearly as strong as with tree height,
density, and moisture. Note also that there is not much ofiatian between -2ZC and 3C. The extinction
coefficients for -2C and 5C are for thawed conditions. However, thé extinction coefficients can be
converted to approximate frozen extinction coefficientsdiyding the thawed extinction coefficients by

two [2].

V. INVERSION ALGORITHM

We use a golden section search over the stand height infeoswal0 to 35m to invert the forward model.
Refer to Fig. 10 for a flowchart of the basic inversion aldurit The estimated tree stand heidhtis
optimized using an objective functian defined as the squared difference between the modeled SRTM
SPC heighﬁspc and the observed SRTM SPC heightpc: J(h,;n, M) = (ZSPC—BSPC)Q. In order to
obtain the observed SRTM SPC height, we average the SRTM 8Rf@th over the tree stand. Since we
use the SRTM-NED heights as an approximation for the SRTM B&ghts, as stated in Section Ill, we
refer to the SRTM-NED heights, averaged over a tree stantharabbreviated form “raw SRTM-NED”

height.
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Here we distinguish between two different estimation sdesaone in which tree densityand moisture
M are known, and one in which we have only rough, approximaleega In both scenarios, we set
and M in J to fixed values. The tree density could be obtained from ancillary sources, which could
include forest growth models or other remote sensing teglas, such as individual tree crown (ITC)
forest analysis using satellite images [40]. could be set to a fixed average value selected according
to location, season, and species. However, in this proabatept paper in the first scenario, we fix
according to ground truth tree density and 8¢é+0.45g/g, which is the average of the moisture range
used to generate our extinction coefficient model. Finally, optimizeJ to yield our tree stand height
estimateh,. The second estimation scenario is more complicated, simare uncertainty is assumed in

the n and M values.

In the second scenario, we assume we do not have accuraés ¥atw and M/ but that we know rough,
approximate values. For this proof-of-concept work wersand M to reasonable, average values (those
values are more precisely defined in Section VI) and optimize yield our tree stand height estimate
h., as in the first scenario. Since there is uncertainty and A/, we need to address the sensitivity/of
to errors inn and M. In the second estimation scenario we use reasonable byth Epproximations for
n and M and report the corresponding height estimatend a range ok, for the given uncertainty in
and M. For example consider Fig. 11, a contour plotgfas a function of. and M for stand RP2 (see
Section VI), which has a raw SRTM-NED height of 16.6m. Theiretton coefficient model assumes
-2°C thawed conditions, but the plot would be essentially th@esdor 5. Suppose we use = 360
trees/ha and/ = 0.45 g/g for the rough, approximate values ferand M. The corresponding tree stand
height estimate:, would be23m. Even if n were off by £50% and M were off by +33%, the range of
the corresponding foh, would vary only from 21m to 26m. Figures 12 and 13 are plote Fig. 11,

except for stands AP2 and RP8 which have raw SRTM-NED heigh&8m and 8.9m, respectively.

In both scenarios, we must know incidence angle, poladmaplatform height, free-space wavelength,

and interferometric baseline parameters for each of Yh&RTM overpasses. We calculate incidence
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anglesd; for each of thei = 1,2,3 SRTM overpasses that imaged the Kellogg Experimental Ednes
averaging the incidence angle files of the Kellogg Principakstigator (Pl) processor data over all of
our test stands. Since the area is small, we expect the mmdangle does not vary appreciably across
the test stands. We obtain polarization information alsmfthe PI processor data. The SRTM free-space
wavelength was set to 5.8cm. The baseline and height pagesnate taken to b& = 60m, a = 45°,

and H = 233km.

VI. TESTRESULTS

We test our algorithm on 13 red pine and Austrian pine stamdsa W.K. Kellogg Experimental Forest,
near Battle Creek, Michigan [41]. Figure 14 is a map of thed$a42] that we investigate in this paper.
The stand polygons overlay the SRTM GDPS heights minus thB N&ghts. Stand areas range from 3
to 45 30m by 30m SRTM pixels. The red pine stands are labeld,"Rhile the Austrian pine stands
are labeled “AP”. Stand RP3 is a mixed red and white pine st&glre 15 is a 1996 color infrared
image of the same area [43], with the darker pine standslgldetinguished from the lighter deciduous
stands. Kellogg provides an ideal test area, since thestsegood ground truth for its forests. Further, it
is a particularly challenging area because of its hilly gmagphy. Figure 16 is the NED for Kellogg. The
elevation in Fig. 16 varies about 50m. The average temperébu the SRTM datatakes for Battle Creek,

Michigan, is -2C [44].

A. Estimation Scenario One: Tree Density and Moisture AssLiKnown

In order to test the first estimation scenario, we took treghteand dbh measurements at six of the
red pine sites (RP1-6). All of the height measurements wakert using an IMPULSE 200 LR laser
rangefinder [45]. We obtained the past basal area per acfeR@r4 and RP6 and used a stocking chart
to convert the dbh and basal area to tree density [46], adguthhe basal area for growth [47]; for RP5
we used dbh and basal area per acre from spreadsheets ohghgtadies [42]. The tree density values

used, in trees per hectare, are 278(RP1), 250(RP2), 36),(RPERP4), 586(RP5), and 358(RP6). We set
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M = 0.45g/g, the center of our moisture range, and compute estinudtdge tree stand height for each
stand. Figures 17 and 18 display the raw SRTM-NED heightstaedmprovement that the estimation
algorithm provides using the € thawed and frozen extinction coefficients, respectivielyRP1-6. The
“x” marks in Figs. 17 and 18, labeled Raco 1 and Raco 2, are stimates for two red pine stands at
Raco, Michigan, using the°& extinction coefficients (not frozen) since the averagdidaiytemperature
for those datatakes is roughly @ [44]. For these two points, thksp is obtained by averaging two
TOPSAR data takes from two different incidence angles. A&, = 1, 2, and the true average heights
for the stands are taken from [20]. The tree density valuesees per hectare, are 1313 (Raco 1) and 876
(Raco 2) [37]. We usé/ = 0.45g/g. We include the Raco data points to illustrate heighteredl for the

5 to 15m range. Further, the results using the TOPSAR daiaatedthat the method is independent of
the instrument. The TOPSAR points, however, are not inadudehe accuracy statistics. The mean value
of the difference between the estimates and the true avérigéts for stands RP1-5 assuming thawed
conditions is about -1.3m. It is even larger for stands Raeod 2, although these are not included in the
statistics. The appreciable non-zero mean value for st&RlIs5 suggests perhaps a bias in the SRTM
data or NED, ground and understory return effects (the fotwaodel does not include these), deciduous
inclusions (for RP1-5), and/or overestimationof. The first could result in a bias up or down. The second
and the last certainly would drive the estimate down. Thedtprobably would drive the estimate down,
since the deciduous trees were defoliated during the SRT8passes, although deciduous inclusions
taller than the surrounding red pine might drive the estartagher. The mean value of the difference
between the estimates and the true average heights forssRiitt5 assuming frozen conditions is about
1.6m, indicating that perhaps the approximate conversiom thawed to frozen extinction coefficients is
excessive in this case. Since there is a bias, the spreade @dstimates about the actual values is best
expressed in root mean square (rms) values. The rms of tferafite between the estimates and the
true average heights is 3.4m (3.6m for frozen conditionsprider to see how much of an improvement

the model introduces to the raw SRTM-NED heights, we not¢ tiiia mean of the difference between
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them and the true average heights is about -7.9m, and the fritie a@lifferences is about 8.3m. Refer
to Table V for a listing of the data. The reason why the meanegative is because SRTM penetrates
the canopy to a certain extent. Tree height, density, imddeangle, moisture content, polarization, tree
structure, etc. all influence the degree of penetration¢céehe need for a model to adjust the observed
raw SRTM-NED height up closer to the true.

Another indication of the performance of the algorithm igoeat relative error, which is the ratio
in percent of the difference between the estimates and thee dverage heights. In the case of this
first estimation scenario used on RP1-6, the mean and rmseofethtive errors are -5.4% and 15.1%,
respectively. The corresponding values for frozen coodgiare 6.0% and 16.8%. For the raw SRTM-
NED heights, the mean and rms of the relative errors are ¥340d 35.5%. See Tables Il and 1V, line

one, for a summary of the above results.

B. Estimation Scenario Two: Tree Density and Moisture aredho Approximate Values

Next we process the data for RP1-6 using the second estimstenario. The results using the €
thawed and frozen extinction coefficients, respectivalg, depicted in Figs. 19 and 20. The dots are the
value of i, for rough values form and M: n = 360 trees/ha (the average density for stands RP1 to
RP5) andM = 0.45 g/g (the moisture value we used for stands RP1 to RP5 in doeoae). As in the
first estimation scenario, the “x” marks are the height estén of the Raco stands using theand M
values and temperature from scenario one. The upward andveand pointing triangles are the minimum
and maximum estimates, illustrating the sensitivityhgfto £50% errors inn and £33% errors in M.
The open circles are the raw SRTM-NED heights. As before vportethe mean and the rms of the
difference between the estimates and the actual averagbtedor thawed and frozen conditions: -1.3m
and 3.4m and 1.3m and 3.6m. The corresponding values foratheSRTM-NED heights are -7.9m and
8.3m, respectively. The mean and rms of the relative erreesa2% and 14.3% and 4.6% and 14.8%
(thawed and frozen) for the estimation algorithm and -342&% 35.5% for the raw SRTM-NED heights.

See Tables Il and IV, line two. As in scenario one, the esimare a significant improvement over the
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raw SRTM-NED heights.

In order to populate the plots with more stands, we add ano#tepine stand for which we have only
height data, RP7, and use a site index curve [48] to provige &average heights for four other red pine
stands RP8-11, similar to the approach used in [21], [22]ité& iadex curve predicts the height of trees
in a stand based on height measurements in the past and tlud tgestand. Additionally, two Austrian

pine stands (AP1-2) are included, too, using the red pireisitex curve. The site index curve is [47]
hy = 1.8908 (1 — 6*0-01979A)1-3892’

where A is the age of the stand in yeai$.is the site index, base 50, which is the average height of the
stand at age 50. Note that since we requifan meters,S also is in meters here.

We run the estimation algorithm on all 13 stands. The resutsplotted in Fig. 21 and 22 for the°@
thawed and frozen extinction coefficients, respectivelgaifh, the Raco stands are assumed°& Wwith
n and M values as in scenario one. The mean and the rms of the difeerdeetween the estimates and
the actual average heights, not including the two Raco poare -0.6m and 2.5m, respectively (1.6 and
3.0m for frozen conditions). The value for the mean of the &®I'M-NED heights is -6.1m. The rms of
the raw SRTM-NED heights is 6.8m. The mean and rms of theivelatrors in the estimates are -1.9%
and 21.3%, respectively (14.0% and 26.2% for frozen comus)i. For the raw SRTM-NED heights, the
mean and rms of the relative errors are -33.1% and 34.4%. iBedhree of Tables Ill and IV. Note
that the level of accuracy displayed by this algorithm idisignt at least for separating the three height

classes in the Raco red pines used in the allometric equaitioRigs. 4 and 5.

VII. CONCLUSIONS ANDFUTURE WORK

This paper presented a red pine tree height estimationigdgothat uses Shuttle Radar Topography
Mission (SRTM) heights and ancillary data, such as the Mati&levation Dataset (NED). The NED was

subtracted from the SRTM heights to provide an estimate efSRTM scattering phase center (SPC)
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height, which was then adjusted to yield an estimate of treight by inverting a forward scattering
model. The algorithm produced tree height estimates tha¢ wignificantly closer to the true tree height
than the raw SRTM-NED heights. The algorithm yielded rm®mrof 2.5 to 3.6m, compared with the

6.8 to 8.3m rms errors from the raw SRTM-National Elevaticatd3et (NED) heights.

Since the SRTM data set is nearly global, and the NED covérsfahe United States, the method
developed here could be applied to large portions of theddrfitates. Determining which portions would
require more data and studies. However, the use of the siagge model with no ground interaction limits
applicability to stands where the ground interaction is Isim@mpared to that of the direct backscatter,
although the general method could employ a more sophisticatodel taking the ground return into
account. Additionally, the model currently used could b&ccurate for steep slopes, such as in mountain-
ous areas. Success in tree height retrieval in mountaineas §16], though, indicates that this limitation
could be overcome by including a non-zero slope, as in [2jthew, the current method is limited to
single-species stands, but it could be extended to accoumiked-species stands. More wide-spread use
would also involve optimal, region-specific algorithmstticauld be developed to work in conjunction
with the National Land Cover Data (NLCD) 1992 [49], also éablie from the EROS Data Center. The
NLCD could be used to determine whether an area is populatesbhiferous or deciduous trees. Then,
a region-specific extinction coefficient model, based ondkpected composition of typical coniferous

and deciduous forests for that area, could be selected itoagstthe average tree height.

It is expected that, based on the results in this paper, thatrae density and moisture information
will generally improve the height estimates, provided ttiet forward model relating tree stand height to
SRTM SPC height includes all of the dominant scattering rapigms. As demonstrated in Section VI,
such information probably would not even need to be too ateuo have a noticeably positive effect on
the height estimates. Methods for estimating tree dengigctly, or via basal area estimates from which
tree density can be derived given allometric equations,ratbe SAR literature. Also, recent advances

in optical and infrared imaging have made individual treewar (ITC) forest analysis using satellite
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images possible. According to [40], remotely sensed imageB)-100cm resolution show promise for
ITC analysis. Estimates of the tree moisture probably wdaddmore difficult to obtain. However, it

might be possible to obtain approximate values from extedgfmm of ground truth or from other remote
sensing techniques, such as in [39]. Global extension ofrtéhod in this paper would rely on accurate
ground height data, such as the NED, as well as on obtainihd, \e@proximate values of tree density

and moisture. Use of probability distributions ferand M could also be explored.
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Fig. 14. SRTM minus National Elevation Dataset (NED) hesghith overlay of map of W.K. Kellogg Experimental Forestetrstands
used in this paper. Darker areas are small height diffesgrared brighter areas are larger height differences. Theiredstands are labeled
“RP”, while the Austrian pine stands are labeled “AP”. Stamdas range from approximately 3 to 45 30m by 30m SRTM pixels.
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Fig. 15. Infrared image from 1996 of the same area in Fig. 1t white overlay of map of W.K. Kellogg Experimental Foreste stands
used in this paper. Darker areas generally correspond tifecous forests; medium values generally are deciduousstsr and brighter
areas usually are bare surface areas.

Fig. 16. NED heights with overlay of map of W.K. Kellogg Expaental Forest tree stands used in this paper. See Fig. I4eDareas
are lower elevations, and brighter areas are higher etmati
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Fig. 17. Results of the first estimation scenario: RP1-6 ragsy the densities and moisture values are known and asguthawed
conditions. The open circles are the raw SRTM minus NED heighee also Tables Ill and 1V, line one. The “x” marks are theéneates
for two red pine stands at Raco, Michigan. For these two ppitite hspc is obtained by averaging two TOPSAR data takes from two
different incidence angles. The Raco stands are not indlideghe accuracy statistics. Stands RP1-6 use tA€ -@xtinction coefficients,
and the Raco stands use th&C5extinction coefficients.
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Fig. 18. Results of the first estimation scenario: RP1-6 ragsy the densities and moisture values are known and asgufromen
conditions. The open circles are the raw SRTM minus NED hsigBee also Tables Ill and IV, line one. The “X” marks are thgneates
for two red pine stands at Raco, Michigan. For these two ppitite hspc is obtained by averaging two TOPSAR data takes from two
different incidence angles. The Raco stands are not indlileghe accuracy statistics. Stands RP1-6 use tA€ -@xtinction coefficients,
and the Raco stands use th&Csextinction coefficients (not frozen).
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Fig. 19. Results of the second estimation scenario for thasemditions: RP1-6 assuming density and moisture are roagroximate
values. See also Tables Ill and IV, line two. The dots are #lees ofh, for n = 360 trees/ha and/ = 0.45 g/g. The upward and
downward pointing triangles are the minimum and maximurmeges, assuming-50% error inn and+33% error in M. The open circles
are the raw SRTM minus NED heights. Stands RP1-6 use theé extinction coefficients, and the Raco stands use fl@ é&xtinction
coefficients.
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Tree Height (rows in meters) /
Tree Density (columns in trees/ha) 100 500 900 1300 1700
5 5,100 | 5,500 | 5,900 | 5,1300| 5,1700
10 10,100 10,500| 10,900| 10,1300 10,1700
15 15,100 15,500| 15,900| 15,1300/ 15,1700
20 20,100/ 20,500| 20,900| 20,1300| 20,1700
25 25,100/ 25,500| 25,900| 25,1300| 25,1700
30 30,100/ 30,500| 30,900| 30,1300| 30,1700
TABLE |

COMBINATIONS OF TREE HEIGHT AND DENSITY VALUES USED TO GENERRE THE EXTINCTION COEFFICIENT MODEL
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Fig. 20. Results of the second estimation scenario for frazenditions: RP1-6 assuming density and moisture are roagproximate
values. See also Tables Ill and IV, line two. The dots are #lees ofh, for n = 360 trees/ha and/ = 0.45 g/g. The upward and
downward pointing triangles are the minimum and maximunmeges, assuming-50% error inn and+33% error in M. The open circles
are the raw SRTM minus NED heights. Stands RP1-6 use th€ extinction coefficients, and the Raco stands use fl@ éxtinction

coefficients (not frozen).
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Incidence Angle (rows in degrees) /
Moisture Content (columns in g/g) 0.3 0.4 0.5 0.6
40 40,0.3| 40,0.4| 40,0.5| 40,0.6
45 45,0.3| 45,0.4| 45,0.5]| 45,0.6
50 50,0.3| 50,0.4| 50,0.5| 50,0.6
55 55,0.3| 55,0.4| 55,0.5| 55,0.6
60 60,0.3| 60,0.4| 60,0.5| 60,0.6

TABLE I

COMBINATIONS OF INCIDENCE ANGLE AND MOISTURE CONTENT VALUESUSED TO GENERATE THE EXTINCTION COEFFICIENT MODEL

Estimation Tree Raw SRTM-NED Estimation Algorithm
Scenario Stands mean rms mean rms
difference(m)| difference(m)| difference(m)| difference(m)

Densities and
moisture values RP1-6 -7.9 8.3 -1.3 (1.3) 3.4 (3.6)
assumed known

Approximate

density and moisture RP1-6 -7.9 8.3 -1.8 (0.9) 3.2 (3.1)
values used
Approximate
density and moisture RP1-11, AP1-2 -6.1 6.8 -0.6 (1.6) 2.5 (3.0)
values used
TABLE III

SUMMARY OF TEST RESULTS THE RAW SRTM-NEDMEAN AND RMS DIFFERENCE REFER TO THE MEAN AND ROOT MEAN SQUARBF

THE DIFFERENCE BETWEEN THE RAWSRTM-NEDHEIGHTS AND THE TRUE AVERAGE TREE HEIGHTSTHE ESTIMATION ALGORITHM
MEAN AND RMS DIFFERENCE ARE THE SAME STATISTICS FOR THE DIFFEENCE BETWEEN THE OUTPUT OF THE ESTIMATION
ALGORITHM AND THE TRUE AVERAGE TREE HEIGHTS THE RESULTS FOR THE FROZEN CONDITIONS ARE IN PARENTHESES

Estimation Tree Raw SRTM-NED Estimation Algorithm
Scenario Stands mean relativg rms relative| mean relative rms relative
error(%) error(%) error(%) error(%)

Densities and
moisture values RP1-6 -34.0 35.5 -5.4 (6.0) | 15.1 (16.8)
assumed known

Approximate

density and moisture RP1-6 -34.0 35.5 -7.2 (4.6) | 14.3 (14.8)
values used
Approximate
density and moisture RP1-11, AP1-2 -33.1 34.4 1.9 (14.0) | 21.3 (26.2)
values used
TABLE IV

SUMMARY OF TEST RESULTS THE RAW SRTM-NEDMEAN AND RMS RELATIVE ERRORS REFER TO THE MEAN AND ROOT MEAN
SQUARE OF THE DIFFERENCE BETWEEN THE RAWRTM-NEDHEIGHTS AND THE TRUE AVERAGE TREE HEIGHTSDIVIDED BY THE
TRUE AVERAGE TREE HEIGHTS THE ESTIMATION ALGORITHM MEAN AND RMS RELATIVE ERRORS ARE THESAME STATISTICS FOR THE
DIFFERENCE BETWEEN THE OUTPUT OF THE ESTIMATION ALGORITHM GMPARED WITH THE TRUE AVERAGE TREE HEIGHTSTHE
RESULTS FOR THE FROZEN CONDITIONS ARE IN PARENTHESES



BROWN, SARABANDI, AND PIERCE: ESTIMATION OF TREE HEIGHT

Fig. 21.
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and the Raco stands use th&Csextinction coefficients.

Results of the second estimation scenario for tdagenditions: RP1-11 and AP1-2 assuming the distributionthe density
and moisture values are known. See also Tables Ill and I\¢, mee. The dots are the expected value& . ofvith n = 360 trees/ha and
M = 0.45 g/g. The upward and downward pointing triangles are the muimh and maximum estimates, assumiqi§0% error inn and
+33% error in M. The open circles are the raw SRTM minus NED heights. StaritlsR and AP1-2 use the®@ extinction coefficients,

| Tree Stand Raw SRTM-NED (m)| Actual Average Height (m) Difference (m)|

RP1 13.9 22.7 -8.8
RP2 16.6 22.9 -6.3
RP3 15.8 25.9 -10.1
RP4 13.7 22.7 -9.0
RP5 12.3 22.4 -10.1
RP6 17.7 20.6 -2.9

SUMMARY OF RAW SRTM-NEDHEIGHTS, ACTUAL AVERAGE HEIGHTS, AND THE DIFFERENCE BETWEEN THE RAWSRTM-NEDAND
ACTUAL AVERAGE HEIGHTS FORRP1-6. THE NEGATIVE DIFFERENCES INDICATE THAT THE RAWSRTM-NEDHEIGHTS ARE ON
AVERAGE BELOW THE TRUE AVERAGE TREE HEIGHT

TABLE V
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Fig. 22. Results of the second estimation scenario for frazenditions: RP1-11 and AP1-2 assuming the distributionthe density
and moisture values are known. See also Tables Ill and I\¢, imee. The dots are the expected value& . ofvith n = 360 trees/ha and
M = 0.45 g/g. The upward and downward pointing triangles are the mmimi and maximum estimates, assumiqi§0% error inn and

+33% error in M. The open circles are the raw SRTM minus NED heights. StaritlsR and AP1-2 use the®@ extinction coefficients,
and the Raco stands use th&C5extinction coefficients (not frozen).
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